T - Path Formula and Atomic Bases for Cluster Algebras of Type D ?
نویسندگان
چکیده
We extend a T -path expansion formula for arcs on an unpunctured surface to the case of arcs on a once-punctured polygon and use this formula to give a combinatorial proof that cluster monomials form the atomic basis of a cluster algebra of type D.
منابع مشابه
Semicanonical Bases and Preprojective Algebras Ii: a Multiplication Formula
Let n be a maximal nilpotent subalgebra of a complex simple Lie algebra of type A, D, E. Lusztig has introduced a basis of U(n) called the semicanonical basis, whose elements can be seen as certain constructible functions on varieties of modules over a preprojective algebra of the same Dynkin type as n. We prove a formula for the product of two elements of the dual of this semicanonical basis, ...
متن کاملNotes on the Cluster Multiplication Formulas for 2-calabi-yau Categories
Y. Palu has generalized the cluster multiplication formulas to 2Calabi-Yau categories with cluster tilting objects ([Pa2]). The aim of this note is to construct a variant of Y. Palu’s formula and deduce a new version of the cluster multiplication formula ([XX]) for acyclic quivers in the context of cluster categories. Introduction Cluster algebras were introduced by S. Fomin and A. Zelevinsky [...
متن کاملCounting Cluster - Tilted
The purpose of this paper is to give an explicit formula for the number of non-isomorphic cluster-tilted algebras of type An, by counting the mutation class of any quiver with underlying graph An. It will also follow that if T and T ′ are cluster-tilting objects in a cluster category C, then EndC(T ) is isomorphic to EndC(T ) if and only if T = τ T . 1. Cluster-tilted algebras The cluster categ...
متن کاملA Z-basis for the Cluster Algebra Associated to an Affine Quiver
The canonical bases of cluster algebras of finite types and rank 2 are given explicitly in [4] and [14] respectively. In this paper, we will deduce Z-bases for cluster algebras for affine types e An,n, e D and e E. Moreover, we give an inductive formula for computing the multiplication between two generalized cluster variables associated to objects in a tube.
متن کاملThe Multiplication Theorem and Bases in Finite and Affine Quantum Cluster Algebras
We prove a multiplication theorem for quantum cluster algebras of acyclic quivers. The theorem generalizes the multiplication formula for quantum cluster variables in [19]. Moreover some ZP-bases in quantum cluster algebras of finite and affine types are constructed. Under the specialization q and coefficients to 1, these bases are the integral bases of cluster algebra of finite and affine type...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015